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ABSTRACT

Likelihood ratio tests for the problem: HO: F cé; versus

Hl: F e3- é? are defined for certain nonparametric families

of distributions && and 6ﬁ'. In particular the likelihood
ratio test is defined and shown to be unbiased when J]

denotes the exponential distributions (possibly truncated)

and <& denotes the distributions with increasing failure
rate. Comparisons are made with competing tests. The problem
of testing for increasing failure rate average is also

examined.




LIKELIHOOD RATIO TESTS FOR RESTRICTED FAMILIES

1. Introduction

Tests for composite hypotheses having optimal properties for finite samples
have been obtained for various special problems by an important principle due to
Neyman and Pearson (1928, 1933) called the likelihood ratio principle. This principle
‘ leads to the likelihood ratio test. Asymptotic properties of this test for
parametric families of distributions can be found in Wilks (1962). Recently
a conditional likelihood ratio test has been proposed for testing for trend in a
stochastic process of Poisson type [Boswell (1966)]. This is a departure from
the standard literature in that the underiying family of distributions considered
is essentially nonparametric. The main result obtained is the asymptotic distribution
of the likelihood ratio under the null hypothesis of no trend.

We consider likelihood ratio tests for certain geometrically restricted

families of distributions. For example, let

tg; = ; F | F(O) = 0 and -log [l-F(x)] nondecreasing in x >0

Then oT is known as the IFRA (for increasing failure rate average) family of
distributions. These distributions play an importart role in the mathematical
theory of reliability [Birnbaum, Esary, and Marshall (1966)]. However, not only
is the family nonparametric but there is no sigma-finite measure relative to which
all F ¢ 6%' are absolutely continuous. Hence, the usual concept of maximum
likelihood es:imate does not suffice. Kiefer and Wolfowitz (1956, p. 893) propose

a generalization of the maximum )ikelihood estimate concept which we adopt. Let

p F2 e and let f(:; F

F FZ) denote

"
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the Radon-Nikodym derivative of F] with respect to the measure induced by F] + F2 .

Definition | !

? is called the maximum likelihood estimate relative to <& if F satisfies |

ﬁ'[ f(Xi; F, I-c) -’ .
sup = =], i
Fesri=iL ¥ - X3 Fo F) ‘

where X = (Xl, Xy wees Xn) is a random sample from some I e¢<i.

This definition is easily seen to coincide with the usual definition when tlie
family & is dominated by a sigma-~finite measure.

Now consider the problem of testing HO: F e&‘o against thz alternative
HI: F eo'r-o"'o where J"o CH. Let EO (F) denote the maximum 1ikelihood

estimate relative to &0 (%) in the sense of definition 1. We define the

Vikelihood ratio sttistic A (X) based on a random sample X as follows:

Definition 2

/\n(g(_) is called the likelihood ratio statistic where

n f(Xi; ?0, F)
W& = TR B )

We will be concerned with the properties of ,\h(l) for various restricted

families of distributions ofo cC .

2. |IFRA Distributions

et Sy = (F | F(0) = 0 ang OB TLEIT T n 2 0] and %= (x,, X,

Terehs Xn) denotes a random sample from F . We claim that the maximum 1ikelihood
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estimate (MLE) Fo relative to o"'o puts mass at each of tne sample observations.
-
To see this suppose & = {F', Fz} where the F' probability of the observation

X, s Fl[xi}>0 for i=1,2, ..., n and szxk]-o for some k (1 <k <n) .

1

From definition 1 it fcllows that F, is ME in c?'* « Since F cc% can put

' 4‘
mass at a countable number of points we may restrict attention to those F CJB 'i
putting mass at sample points; i.e., F absolutely ccntinuous with respect to ‘
A+ yu where )\ is Lebesque measure and n{A} equals the number of sample
points in A . The likelihood becomes 1
:
L(X|F) = n Fix} ;
n'- . i
im=) 4
Prcschan and Marshall (1967) have obtained the MLE under the IFRA
3
assumption. From the definition of IFRA distributiorswe see that ‘ ]
3
n f i
(2.1) L(X|F)=nm [exp(- A, (X)) - exp(- 2 X')] ‘
ﬂ - ¢ i.! i-] i i ;

where 0 <) <) < ... £} . We maximize likelihood subject to these restrictions

PO T Th

by letting )‘o =0 and )\n = +o , Letting A )\J = )‘j - >‘j-l where )‘o =0

and ) = 4o, we see that (2.1) becomes

-1 n
(2.2) L (X | F) = nn [exp(- A2 E Xj) [V - exp(- & X‘X,)]] .
j=1 i+

Maximizing (2.2) subject to A\, 20 (1 <1 <n) we see that
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i ¥(X;) i
> =
- n n w
X T ¥(x.) TY,
J j=i J j=i J
- l . '
Since h(x) = x (1 - x)* is increasing in x (0 <x <1), it follows that
n=1 n=1
nohfXi > n hf Y
i=1 st =]
X, ¥
i J i J

where (Y] Y, <ee < Yn) is an independent ordered sample from G . (2.6)

2
follows immediately and the proof of (2.7) is similar.Il

We say that F, <F, (i.e., F, is starshaped with respect to FZ)

1 2 1

Fy'¥ ) (x)
x
that Fl £ F2 implies

is nondecreasing for x > 0 . From the proof of theorem 2.1 it follows

PFI{I\,(D se )= PFz (X e .

Hence the power of the likelibood ratio test is greater at F, than at F] when

1 ) ° Percentage points for -log An(ﬁ) are given in Table 1.

0f course there are many unbiased tests of the IFRA hypothesis. Marshall,
Walkup ana Wets (1966) have characterized the class of all such tests. These are

just the tests based on functions f(x‘, X1 eoes 41) having the properties:

1) f is homogenous;

J
2) T ox, A X X)) g for j=1, 2, ., ned
i=1 ox ., and all
' Xy > X, > 400 >2x >0,
12X 2 2%, 2
g TR A ” ) 4

" “
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The test associated with f would reject Ho if
F(Xys Xos veey X)) 2 c

where ¢ is some suitable critical number and X' > X

2 > ... > X are the
= = "n

usual order statistics labelled in reverse order.

3. IFR Distributions

Let & = (F | F(0) =0 and - log [1 - F(x)] is convex for x >0} . This
is the class of IFR (for increasing failure rate) distributions. Proschan and
Pyke (1965) have proposed a test for constant versus increasing failure rate.
Their test is based on a statistic considered by M. G. Kendall (1938) and
H. B. Mann (1945) and is essentially a rank test for trend. Proschan and Pyke
show that their test is unbiased, has good large sample properties, and is competitive
in this sense with certain parametric tests when the unknown distribution lies
within some specified parametric family. However, sampling experiments indicate
that their test does not have good discriminating power for relatively small
samples. This is perhaps to be expected since their test does not usec all of the
informaticn in the sample.

M. Boswell (1966) studied a similar problem concerning Poissor type processes.
His statistic based on a conditional maximum likelihood ratio test is essentially
the same as th? likelihood ratio statistic studied in this section. The main
result in Boswell's paper is a derivation of the asymptotic distribution of his
test statistic. |In contrast, we concentrate on small sample results.

Since IFR distributions can have a jump at the right hand end of their

interval of support it is clear from definition 1 that we need only consider

e ot P et

i et
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estimators absolutely continuous with respect to Lebesgue measure on [0, X )
n

with a jump at Xn (see Barlow and Proschan, (1965), p. 26). Hence

n-1
L (X | F) -[TT f(xi)] Fix,}

i=1

where f s the density of F on [0, Xn) . Since

X
I =« F(x) = exp]| - /r(u)du where r(u) = f(u)/T1 - F(u))

(o)

for 0 <u <Xn,we may write

X
J-r(u)du
f(x) = r(x) e” © 0 <x <Xn
X
fn r(u)du
and Fix }=e” ° .
Hence
n=1 n xi
(3.1) log an | F) = £ Jlog r(Xi) - = f r(u)du
i= i=1

The problem of maximizing (3.1) subject to r{x) nondecreasing was sclved by
Grenander (1956) and independently by Marshall and Proschan (1965). They show
that the problem can be reduced to maximizing

n-1 n-1

_Z] log r(X;) - 2‘ (n - 1) (X, - %) r(x))
= i=

subject to r(X‘) < r(Xz) <. < r(Xn_l) . The maximum likelihood est imates are.

WP, STPIRE VT W, N BT Y OURgy S ) Py GLAIPWOTORLE, v Tis o1 Sty S e adt.




Fn(xi) = nin max
v. i+] u<i

(v - u)
(n-u)U(u_H- Xu) DI FI oA L ﬁ-vﬂ)rxvjv_w]

for i=1,2, oo, n -1, The maximum }ikelihood is

n-1
(3.2) L, (x| F) =[TT '“'("a)] L

i=1

The exponent on e can be easily verified using the definition of F and observing

that
X,

i xi+l
n n-1
.2]/ F(u)du; T (n - i)/ F(u)du .
X,

i= 0 i=1
i

Let o = {F | F(O) =0, F(x) =1 - e™ for x<T and F(T) =1, A >0, T > 0}

Then c?; denotes the class of exponential distributions with possible truncation
on the right. Consider now the problem of testing Ho: F e-;% versus

HI:

Fo and F are both absolutely continuous with respect to Lebesqgue measure in

(o, Xn) and place mass at X_ . The Vikelihood under H = will be

n-1
= -AX; | -\
L (x|F) [II Ae ]e n

i=1

F eéﬁlcf; + The choice of Ho was determined by the fact that the MLE's

and the maximum likelihood will be
n=1

2 n-1 -n
(3.3) L (X |F)=f~ e

Z Ii

According to definition 2, the likelihood ratio statistic for testing for

truncated exponentiality versus IFR and not truncated exponentiality will be
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I ] < 1 Seev < 1 so that
(n-D-X)  (n - 2)(X3-X,) (x-X 7
n-1
a - 1 =1,2, ..., n -1,
r(Xl) T i)(x;+" X;) ! n
then (3.4) becomes
* % "
A o) = [0 T - D08 - %)

As in section 2 we consider the test, ¢* » which rejects H, when
An (X) < <,
where ca is determined by
Pe {h, () <c}=a.

The asymptotic distribution of A: (Y) can be found in Boswell (1966, p. 1572).

A table of percentage points obtained using Monte Carlo methods is contained in

Table 2.

L, Unbiasedness of the Likelihood Ratio Test for IFR

Like the Proschan-Pyke test, the likelihood ratio test has greater power

under the alternative than under the null hypothesis. To show this we need to

introduce some auxilliary results.
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1

i
Given a sequence of nonnegative real numbers {z:} , plot I z-i versus

i=1 1

i and interpolate linearly between (0, 0), (1, z‘), eee (n, z,

Let 2z

I\

1 2

+ e 06 + ®
zn)

z 2000 > ;n denote the slopes of the least concave majorant to this

graph in successive intervals. This operation converts the original sequence into

a nonincreasing sequence and will be useful later or. For convenience, call

n

averaging of the original sequence until it becomes nonincreasing.

We say that H(z], Zyy eees zn) is a Schur function if

oH_ H
(z, -zj)<azi - azj) >0

for all vectors zand i, j=1,2, ..., n. This concept is needed in the

v

following useful lemma.

Lemma 1

] ] ]
Let (zl, Zih 1% 94 | zn) and (z,, Zyy vees zn) denote two nonnegative

2

sequences such that

r r s
Tz, 2%z, for r=1,2, «e., n =1
y T !

and
n n o,
Tz, =2Zz,
I !

Then the inequalities are preserved under Brunkization;

st B Bl v PP IPRORRE

> e _>_-z the Brunkized sequence after D. Brunk (see D. Brunk et. al.
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r _ r -

T z, 2 z z, (r=1,2, ..., n = 1)
i=1 i=1

n __ n -T

r z.= I z

=t ' = !

If H 1is a Schur function then

ce ey Z3

= - T
3 ooy Zn) ZH(Z‘, 22,

(it) H(;‘, 2, ) .

Proof:

(i) is obvious since the least concave majorant to the [zi] sequence

'
lies above the least concave majorant to the {zi} sequence.

= == - -7 n_ n =
D2, 240 D2 52, >eee >2 and T 2, =T 2,
- "2 - = = - 'n p 1

Since (i) holds, 2z 2 :

1

we have (ii) by the Schur, Ostrowski theorem (see Ostrowski (1952)). //

Theorem 4.1

If G-]F(x) is convex for x >0, 6(0) = F(0) =0 and X (Y) denotes a

random sample from F(G) , then

A, () < (Y)
st

Remark

This proves the likelihood ratio test A; is unbiased since if F is |[FR

=X

and G(x) =1 -e for x >0, then G-lF is convex on x >0 .

Proof:

¥ =1 ¥t
Let Y. = G F(Xi) and note Y,

|;;Yi

Aoy




(h - i)x.. . -x)
zi = n-ln | il ! and

? (n - i)(xiﬂ'xi)

R IR

i n-1 = I~
f (n = i) (Y- Y)

o,

Since Y: = G-'F(Xi) and G-'F is convex

(n - (Y], - 7))
(h - O, XJ

is increasing in | = 1,2, ..o, n. It follows from lemma 3.7 (i) of Barlow

and Proschan (1966) that

r r
and hence ¥ 2, 2%z, for r=1,2,...,n-1. Let {zi] and
1 1

'
Brunkized estimates of {zi} and {zi] respectively. Let

n-

!
-H(x', Xos wee, xn_') = ] x.

!
and note that H is a Schur function. Since {zi} and {zi]

hypotheses o1 lemma 1, it follows that

FLPRETIEELY T T

2, s e = R . ) LT e

ST Rt ey TR P

=T

{zi}

denote the

satisfy the

T Ly s e R TR T WP
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Hence
_ 1 _ 1
(k1) n-1 ' n-1 n-1 . = n-1 o n-1 n-1 o
;13 (n - )X - %) T]T F(x;) ;.:(n-l)(Yi;]Yi):l U F(Y:)
Since
r e e n <
6 (n - ')(Yi+l- Yi) ) ? Yi
r -n
g(n - DX, - X)) ,s]:xi

for (1 <r<n - 1) by lemma 3.7 (i') of Barlow and Proschan (1966) it follows that

n-1

(4.2) 1; (n - i)(xm

n-1\
=K. T (n -
' 1

i)(Y?+l- Y?)

X,
i

..-rM:

<

(4.1) and (4.2) together imply

AR < A (Y)

The theorem follows from (Y], Y2, ey, Y ) =

n° st

ot
"

(YT, Y2 S = N

Marshall,Walkup and Wets (1966) have characterized the class of unbiased

tests for constant failure rate versus nondecreasing failure rate. These are

based on functions h(xl, Xyy vees x’) satisfying the conditions
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i) h is homogeneous;
j ah(xl, Y xn)
ii Z X.- X. > 0 i = ‘ es e L
) ( : J'”) 3"; 2 J 2t y N 1

for all X > Xg > e > x> 0 . The corresponding test consists of rejecting

exponentiality if h(X], X2,

;
e Xn) < ¢ where c is a suitable critical number 1«‘
and X] > X2 >0l > Xn are the order statistics labelled in reverse order. ;

; 5. Distribution of the Maximum Likelihood Ratio Statistic Under the Exponential

Assumption

From the computatioas in Boswell (1966) it is clear that the distribution of

A: ,» even under the null hypothesis, is exceedingly complicated. For this reason {

we have had to use Monte Carlo methods to obtain the percentage points tabulated

in Table 2. However, the distribution of A; under Ho is quite smooth j

as we show in i

Theorem 5.1

The likelihood ratio statistic A; has a nonincreasing density on (0, 1)

under the exponential assumption.

Proof:

Let 0=W_ <W <...< Nn denote an ordered sample from the uniform

distribution on (0, 1) . Let

U.=w.-w. ig‘, 2; o-o,n“-




Then the random vector (U], UZ’ Sy

)=

h(u‘, Uys ooes U

Let (U‘, UZ’ cees U _‘) denote the
Brunkization and subject to U‘ > [E

The likelihood ratio statistic

ARSI VRS AR PO . . B o
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U _‘) has joint density
for u. >0
i=‘,2,o¢-,n"
0< u‘ + u2 + ... 0t un_‘ < |
otherwise.

modified vector (U‘, Uys =ens L%_‘) after

> 22Uy

¥ _ ]
An(i) “/n n-1 n-1 _
o T r(y.)
! | '
n-1
n-\
. N ] n-1 - 5 F J
is distributed as (n - 1) 1B v under the exponential assumption. Notationally

1

it will be convenient to replace n
n-—
P{TTU
i=1

is concave in z ¢ (0, 1) . Let I

observe that

%TI'U <z

i=1

nyff i f

<u‘+..+u <)

-1 by n . Hence we need only prove that

denote the usual indicator set function and

r . e 0 unf z] dUI LN dun
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|

Integrating out on u we have 1
n

i

!

2] o ffo S sy e

u|+...+u <]

n=l=—

where

" Os.lns‘ -U‘-...-Un_l

] = min [1 - Up = eee = U1 un(z)]

{
_ y
Flugs eees v 15 z) = f I Tupe..uy < z)du . % i
é
|
Z

and un(z) is the solution of z = u, ... Uno1 Yp

{ for fixed u', U,y soe, U -

2 nel

We claim that 2z is a strictly increasing convex function of u and, .
therefore, that u Is astrictly increasing concave function of z . It follows

that f(u‘, vee, U z) is a concave funct.on of 2z for fixed (ul. Ups ey U ‘). F

n-l;

Hence

‘ n
. P ]TU.<2' -'-n.'ff....f f(u,y, eee, u . 2)du, ... du
y = ’ u. >0 1 n-l 1 n-1

] is a concave function of z .

To show z = uI eee Uy un is a convex function of u, define

(U, vers un_‘) to be the Brunk modification of (u‘, Uys ens un_l) subject

= =% %

to u, 2u, > ... > Gn j + Clearly 2z is piecewise convex for u_ = in the

. -7 = - =% ¥ =% .
intervals [0, un-Z]’ [un_z, un_3]. ceey [V = Up = eee = U u‘] . It is

therefore sufficient to show that 2z has a continuous derivative in Y, - We show

& -
that the right and left hand derivatives at u_=u , are equal. Foru <u ]

et S S oo 5 oot
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-t

For u_= uoy o obviously

n

P

uj+l+"'+un-l ) u. l+...+un_|+un ”
n=-1-j n-j )

For n=2 and n=3 it is a straightforward computation to obtain the
distribution of A:(l) . Clearly, for n=2

s
[y

ALY =4,

and the likelihood ratio is uniformly distributed on (o, 1) .

For n=3
. _ L Ul U2 if U‘ > U2
m(Y) =470 U =
3= 1 72 2 ;
(U, + 1) if U <U -
Hence
pG.‘A*(_Y_)Su = ffz du, du, + ff 2 du, du
(3 UU.< B ' : u,+u_ < Vu ‘ 2
{12—5 {1 2= }
UIZ u2 ulf u2
and

P(;:A;(l) _<_u= =%H+i'u [log( Vo

18
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The density is
1 +VT-
63(6) =+ 4 10g| L2YTm]
u
It is easy to check that g s decreasing, 93(0) =+ m, 93(1) =1 and |
] ]
g.;(O) = g3(l) = - o . It is tempting to conjecture that this behavior is true s
' | ' 4
in general, i.e., gn(C) =+ o, gn(O) = gn(l) =-o for n>3.
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TABLE 1 u
Percentage Points
for -log An(i)
Sample Size Percentiles
n .01 .05 .90 .99
2 0.015 0.072 3.3 4.85
3 0.2°6 0.480 5.25 7.25
L 0.6 1.1 6.9 9.0
5 1.2 1.8 8.6 10.8
6 1.7 2.5 10.1 12.6
7 2.4 3.3 .7 14.3
8 3.0 L.2 13.2 15.8
9 3.7 5.0 4.7 17.6
i 10 L.6 5.8 16.1 19.2
fNote that we use lower percentiles for testing exponentiality
versus IFRA and upper percentiles for testing IFRA versus DFRA.
]
3
l
f
4
| . iAo o s o s - . b
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TABLE 2 5
Percentage Points for the IFR
Likelihood Ratio Statistic A::(i)
N
Sample Size Percentiles Numbe+ of Random
n .05 .01 Simulations Used
2 .0500 .0100 50,000 i
3 .025 .004 50,000 1
L .0162 .0027 L0,000
5 .0125 .0017 50,000 i
6 .01 .00156 60,000
7 .0087 .001 60,000
8 .0077 .001 80,000 h
9 .0065 .0007 70,000
10 .0055 .0007 50,000
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6. Comparisons with Competing Tests

In a paper in process (Barlow and Jacobson) we study in some detail the
robustness of the IFRA and IFR likelihood ratio tests relative to selected competing
tests. Preliminary investigations indicate that the IFR likelihood ratio test is
much better than the Proschan-Pyke test for small samples. However, they have
achieved a remarkable amount of information concerning the asymptotic behavior of
their test statistic. |In particular they show that their test statistic, suitably
normalized, has an asymptotic normal distribution for a wide class of alternative
distributions. On the other hand, the distribution of the IFR likelihood ratio
statistic, under the null hypothesis, converges to a weighted sum of x2 distributions
which is rather cumbersome to compute. For small sample sizes (say n < 10) both
statistics are relatively easy to compute with the aid of a desk calculator.

Ficure 1 is a graph of the powur functions for both tests against Weibull

o
- () for X > 0 where o is

distribution alternatives (i.e., F(x) =1 -e
the shape parameter) when the sample size is 10 and the significance level is
5%. These curves were obtained by m:ans of Monte Carlo simulation on a computer.
The power of the Proschan-Pyke test increases very slowly as a function of the
Weibull shape parameter, o . Even when the shape parameter o = 3 , the power is
only .62. Our numerical investigaions indicate that for o > 3 the power increases
even more slowly and that for ¢ = 500 , the power is only .86. For n = 20,
the power of the Proschan-Pyke test is much better; it yields a power of .92 for
o =" . |t should be noted, however, that the power of this test is stiil not as
good as the power of the likelihood ratio test when n = 10 .
The asymptotic relative efficiency of the Proschan-Pyke test relative to the
Weibull likelihood ratio test when the true distribution is of the form G(x) =
-(x)°

1 -e (0 >1) for x >0 was computed to be .59 (see Proschan-Pyke (1965)).

The asymptotic relative efficiency of their test relative to the gamma likelihood




22

ratio test when the true distribution is the gamma is only .20. Unfortunately,

asymptotic evaluation of the IFR likelihood ratio test seems to be extremely difficult.
There are many additional unbiased tests of exponentiality versus IFRA or

IFR which should perhaps be considered. Pecall that all of the associated

statistics are necessarily homogeneous. A statistic related to the IFR likelihood

ratio statistic is

If there are no reversals of the normalized differences (they should decrease under

IFR alternatives) then A; and A:% agree except for the factor n Xl and a

constant. |If G" F is convex, then

The test which rejects exponentiality when A;J (X) is sufficiently large is related
to a test derived by Moran (1951) for a problem concerning renewal processes. Under
the assumption of exponentiality

-2 log A (Y)

1 + n+l

Bn

W =

is asymntotically distributed as a xz variable with n - 1 degrees cf freedom.
Epstein's (1960) test 8 uses this statistic. Monte Cario experiments by Zelen
(1961) indicate that the power of this test is less than that of the Proschan-Pyke
test for small samples against Weibull distribution alternatives.

In section 2 we proved that F <G implies

&= .
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Hence we could consider the test, <« , which rejects exponentiality in favor of

the IFRA hypothesis when An(ﬁ) Z< ., where

o 1M z ey L= R a0 e ]

For this test we would use the upper percertile points of -log An(ﬁ) given in
Table 1. Since An(i) ic essentially the maximum likelihond under the IFRA
assumption it is perhaps not too surprising that it seems superior to the IFR
likelihood ratic test (see Fig. 1). On the basis of computer calculations we
conjecture that -log An(i). suitably normalized, is asymptotically N(O, 1)
Perhaps a better test than all of those considered so far is a uniform

conditional test [see Cox and Lewis (1966) p. 153 ] based on the mean of the

rectangular distribution. This has been described by Bartholomew as the oldest
known statistical test (see discussion in Cox (1955) ). Epstein (1960) adapted this
test to the life testing problem and called it test 3. The test is based on the

total time on test up to the i-th order statistic (i =1, 2, ..., n), i.e.,

T (x.) = f‘ (n -5+ 1) (- ))

The test statistic is DT s ) /3 Xi . Under the exponential hypothe . is
n-1 ; )

o 11 I
l [}

= 3
>

n —
BN Vin - 1)/12
|
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is approximately N(O, 1) even for relatively small n . If F <G, then it

follows from Theorem 3.12 (iii) [Barlow and Proschan (1966)71 that

n-1 n-1
L T(X.) T T(Y.)
l | . ] i
————————— S —
n yoll
ox, St owv,
! )
Hence a natural test, w“ﬁﬁ:. rejects exponentiality in
n-1 T(Xi)
favor of IFRA if % > c
‘ n - (2
z &
]
n-1 n
where P TT(Y.)/ Y. >c {=¢o.
G i i -

1 ]

Empirical sampling by Zelen and Dannemiller [(1961), p. 47] indicates that this
test is superior to w”w against Weibull distribution alternatives. Investigations
by Cox (1955) show that the analogue of this test for randomness in a sequence

of events is the most powerful test of the Poisson hypothesis against the alternative
of a time-dependent Poisson process with occurrence rate

o+t

Mt) = e B

See Bartholomew (1966) for further results concerning this test.

7. Concluding Remarks

It is perhaps worth noting that the percentage points in Table 2 and the results
of sectionS also apply to the Boswell test for trend in a stochastic process of
Poisson type. However, if the sample size is n and one is using the Boswell

statistic then one should locate percentage points in Table 2 corresponding to




o ey TP

the number n + 1 . A proof for unbiasedness of the Boswell test can be made,
patterned after the techniques of section 4.

The number of possible likelihood ratio tests which may be constructed using
the definitions in section | is fairly large. Recall that the DFR (for decreasing
failure rate) maximum likelihood estimate is absolutely continuous when F(0) = 0
(Marshall and Proschan (1965) ). Hence one can construct a likelihood ratio test
for the following problems:

H : F a truncated exponential

(1) versus ¢
H.- F DFR anc then IFR (F(O) = 0)

H.: F IFR
versus

H,: F DFR and then IFR (F(0) = 0)

Note that the maximum likelihood estimates under both the hypothesis and the
alternative in each case will be absolutely continuous except at the largest
observation, Xn , if we impose the additional resiriction F(0) = 0 .

Clearly we can also construct a maximum likelihood test for

HO' F truncated DFR

H]: F DFR and then IFR.

(3) versus

There is no difficulty in constructing maximum }ike!lihood tests for the problems:

H. : F exponential

(L‘) versus

H,: F DFR (F(0) = 0)
and

Hy: F DFR (F(0) = 0)
(5) versus

H.: F has decreasing density (F(0) = 0).
and F not DFR




-
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The maximum likelihood estimate assuming a decreasing density is given by Grenander
(1956). Recall that if F is DFR, then it has a decreasing density.

Likelihood ratio tests for the twc sample problem will be considered in a

subsequent paper.
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